Romanian Journal of Medical and Dental Education Volum 13 Issue 3, 2024 INNOVATION IN BIOCOMPATIBLE MATERIALS FOR DENTAL IMPLANTS: CURRENT PERSPECTIVE AND SITUATIONS

INNOVATION IN BIOCOMPATIBLE MATERIALS FOR DENTAL IMPLANTS: CURRENT PERSPECTIVE AND SITUATIONS

Asaftei Victoria, Ciornei Mădălina, Țabără Eduard Lucian, Agop-Forna Doriana, Maxim Alexandra, Norina Forna

Abstract

Peri‐implantitis is an inflammatory disease of hard and soft tissues around osseointegrated implants, followed by a progressive damage of alveolar bone. Oral microorganisms can adhere to all types of surfaces by the production of multiple adhesive factors. Inherent properties of materials will influence not only the number of microorganisms, but also their profile and adhesion force onto the material surface. In this perspective, strategies to reduce the adhesion of pathogenic microorganisms on dental implants and their components should be investigated in modern rehabilitation concepts in implant dentistry. To date, several metallic nanoparticle films have been developed to reduce the growth of pathogenic bacteria. However, the main drawback in these approaches is the potential toxicity and accumulative effect of the metals over time. In view of biological issues and in attempt to prevent and/or treat peri‐implantitis, biomaterials as carriers of antimicrobial substances have attracted special attention for application as coatings on dental implant devices. In this review we overview currently available biomaterial systems that can be used in the field of oral implantology.

The osseointegration rate of titanium dental implants is related to their composition and surface roughness. Rough-surfaced implants favor both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. The different methods used for increasing surface roughness or applying osteoconductive coatings to titanium dental implants are reviewed. The future of dental implantology should aim to develop surfaces with controlled and standardized topography or chemistry. This approach will be the only way to understand the interactions between proteins, cells and tissues, and implant surfaces. The local release of bone stimulating or resorptive drugs in the peri-implant region may also respond to difficult clinical situations with poor bone quality and quantity. These therapeutic strategies should ultimately enhance the osseointegration process of dental implants for their immediate loading and long-term success.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download [183.83 KB]